2     «íµ¥¦¡ (Identities)

2.1   ùÚµ¥¦¡ªº¸q·N

µ¥¦¡¥ª¤è»P¥k¤è¸g¹Bºâ«á¦³§¹¥þ¬Û¦Pªº¶µ(terms)¡C

¨Ò¡G        ÃÒ©ú (x + 1) (x + 4) = (x + 2) (x + 3) - 2 ¬O«íµ¥¦¡

                ¸Ñ¡G        ¥ª¤è        =      (x + 1) (x + 4)

                                                =     

                                                =     

                                ¥k¤è        =      (x + 2) (x + 3) - 2

                                                =     

                                                =     

\         ¥ª¤è = ¥k¤è

\         (x + 1) (x + 4) º (x + 2) (x + 3) - 2

 

µ¥¦¡¤¤ªºÅܼÆ(x)¡A¥N¤W¥ô·N¼Æ³£¨Ïµ¥¦¡¦¨¥ß¡C

¨Ò¡G        ­YA(x + 2) - 4 3(x + 1) - B¡A¨DA©MBªº­È¡C

                ¸Ñ¡G        ¥Nx = ¡Ð2¡A A(¡Ð2 + 2) - 4 =  3(¡Ð2 + 1) - B

                                                                        - 4  = ¡Ð3 ¡V B

                                                                         B    = 1

                                ¥Nx = 0¡A       A(0 + 2) - 4 = 3(0 + 1) - 1

                                                                2A - 4 = 3 - 1

                                                                        2A = 6    

                                                                         A = 3

 

2.2   ±`¥Îªº«íµ¥¦¡ (Common Identities)

1.                              4.    
2.                                  5.    
3.  

 

¨Ò¡G        ®i¶} (5 - 2a)2

¸Ñ¡G        (5 - 2a)2  = 52¡Ð2(5)(2a)¡Ï(2a)2

                                        = 25¡Ð20a¡Ï4a2